Bandwidth selection for a data sharpening estimator in nonparametric regression
Kanta Naito and
Masahiro Yoshizaki
Journal of Multivariate Analysis, 2009, vol. 100, issue 7, 1465-1486
Abstract:
This paper is concerned with data-based selection of the bandwidth for a data sharpening estimator in nonparametric regression. Two kinds of bandwidths are considered: a bandwidth vector which has a different bandwidth for each covariate, and a scalar bandwidth that is common for all covariates. A plug-in method is developed and its theoretical performance is fully investigated. The proposed plug-in method works efficiently in our simulation study.
Keywords: Bandwidth; Bias; reduction; Data; sharpening; Kernel; Nonparametric; regression; Plug-in; method (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00282-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:7:p:1465-1486
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().