All admissible linear estimators of a regression coefficient under a balanced loss function
Guikai Hu and
Ping Peng
Journal of Multivariate Analysis, 2011, vol. 102, issue 8, 1217-1224
Abstract:
Admissibility of linear estimators of a regression coefficient in linear models with and without the assumption that the underlying distribution is normal is discussed under a balanced loss function. In the non-normal case, a necessary and sufficient condition is given for linear estimators to be admissible in the space of homogeneous linear estimators. In the normal case, a sufficient condition is provided for restricted linear estimators to be admissible in the space of all estimators having finite risks under the balanced loss function. Furthermore, the sufficient condition is proved to be necessary in the normal case if additional conditions are assumed.
Keywords: Admissibility; Space; of; all; estimators; With; and; without; normality; assumption; Balanced; loss; function (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X11000595
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:102:y:2011:i:8:p:1217-1224
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().