Second-order accuracy of depth-based bootstrap confidence regions
Bei Wei and
Stephen M.S. Lee
Journal of Multivariate Analysis, 2012, vol. 105, issue 1, 112-123
Abstract:
We consider the problem of setting bootstrap confidence regions for multivariate parameters based on data depth functions. We prove, under mild regularity conditions, that depth-based bootstrap confidence regions are second-order accurate in the sense that their coverage error is of order n−1, given a random sample of size n. The results hold in general for depth functions of types A and D, which cover as special cases the Tukey depth, the majority depth, and the simplicial depth. A simulation study is also provided to investigate empirically the bootstrap confidence regions constructed using these three depth functions.
Keywords: Confidence region; Depth function; Second-order accurate (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X11001758
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:105:y:2012:i:1:p:112-123
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2011.08.016
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().