Robust empirical likelihood inference for generalized partial linear models with longitudinal data
Guoyou Qin,
Yang Bai and
Zhongyi Zhu
Journal of Multivariate Analysis, 2012, vol. 105, issue 1, 32-44
Abstract:
In this paper, we propose a robust empirical likelihood (REL) inference for the parametric component in a generalized partial linear model (GPLM) with longitudinal data. We make use of bounded scores and leverage-based weights in the auxiliary random vectors to achieve robustness against outliers in both the response and covariates. Simulation studies demonstrate the good performance of our proposed REL method, which is more accurate and efficient than the robust generalized estimating equation (GEE) method (X. He, W.K. Fung, Z.Y. Zhu, Robust estimation in generalized partial linear models for clustered data, Journal of the American Statistical Association 100 (2005) 1176–1184). The proposed robust method is also illustrated by analyzing a real data set.
Keywords: B-spline; Efficiency; Empirical likelihood; Generalized estimating equations; Generalized partial linear models; Longitudinal data; Robustness (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X1100162X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:105:y:2012:i:1:p:32-44
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2011.08.003
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().