EconPapers    
Economics at your fingertips  
 

Functions operating on multivariate distribution and survival functions—With applications to classical mean-values and to copulas

Paul Ressel

Journal of Multivariate Analysis, 2012, vol. 105, issue 1, 55-67

Abstract: Functions operating on multivariate distribution and survival functions are characterized, based on a theorem of Morillas, for which a new proof is presented. These results are applied to determine those classical mean values on [0,1]n which are distribution functions of probability measures on [0,1]n. As it turns out, the arithmetic mean plays a universal rôle for the characterization of distribution as well as survival functions. Another consequence is a far reaching generalization of Kimberling’s theorem, tightly connected to Archimedean copulas.

Keywords: Multivariate distribution function; Multivariate survival function; Fully n-increasing; n-monotone; n-absolutely monotone; Copula; Classical mean value (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X11001667
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:105:y:2012:i:1:p:55-67

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2011.08.007

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:105:y:2012:i:1:p:55-67