Covariance selection and multivariate dependence
Bhaskar Bhattacharya
Journal of Multivariate Analysis, 2012, vol. 106, issue C, 212-228
Abstract:
Considering the covariance selection problem of multivariate normal distributions, we show that its Fenchel dual formulation is insightful and allows one to calculate direct estimates under decomposable models. We next generalize the covariance selection to multivariate dependence, which includes MTP2 and trends in longitudinal studies as special cases. The iterative proportional scaling algorithm, used for estimation in covariance selection problems, may not lead to the correct solution under such dependence. Addressing this situation, we present a new algorithm for dependence models and show that it converges correctly using tools from Fenchel duality. We discuss the speed of convergence of the new algorithm. When normality does not hold, we show how to estimate the covariance matrix in an empirical entropy approach. The approaches are compared via simulation and it is shown that the estimators developed here compare favorably with existing ones. The methodology is applied on a real data set involving decreasing CD4+ cell numbers from an AIDS study.
Keywords: Association; Convergence; Covariance structure analysis; Empirical entropy; Fenchel duality; I-projection; Longitudinal data; MTP2; Multivariate normal distribution; Nonnormal (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X11002077
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:106:y:2012:i:c:p:212-228
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2011.11.002
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().