Boundary behavior in High Dimension, Low Sample Size asymptotics of PCA
Sungkyu Jung,
Arusharka Sen and
J.S. Marron
Journal of Multivariate Analysis, 2012, vol. 109, issue C, 190-203
Abstract:
In High Dimension, Low Sample Size (HDLSS) data situations, where the dimension d is much larger than the sample size n, principal component analysis (PCA) plays an important role in statistical analysis. Under which conditions does the sample PCA well reflect the population covariance structure? We answer this question in a relevant asymptotic context where d grows and n is fixed, under a generalized spiked covariance model. Specifically, we assume the largest population eigenvalues to be of the order dα, where α<, =, or >1. Earlier results show the conditions for consistency and strong inconsistency of eigenvectors of the sample covariance matrix. In the boundary case, α=1, where the sample PC directions are neither consistent nor strongly inconsistent, we show that eigenvalues and eigenvectors do not degenerate but have limiting distributions. The result smoothly bridges the phase transition represented by the other two cases, and thus gives a spectrum of limits for the sample PCA in the HDLSS asymptotics. While the results hold under a general situation, the limiting distributions under Gaussian assumption are illustrated in greater detail. In addition, the geometric representation of HDLSS data is extended to give three different representations, that depend on the magnitude of variances in the first few principal components.
Keywords: Principal component analysis; High Dimension Low Sample Size; Geometric representation; ρ-mixing; Consistency and strong inconsistency; Spiked covariance model (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X12000747
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:109:y:2012:i:c:p:190-203
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2012.03.005
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().