Semiparametric estimation of conditional copulas
Fentaw Abegaz,
Irène Gijbels and
Noël Veraverbeke
Journal of Multivariate Analysis, 2012, vol. 110, issue C, 43-73
Abstract:
The manner in which two random variables influence one another often depends on covariates. A way to model this dependence is via a conditional copula function. This paper contributes to the study of semiparametric estimation of conditional copulas by starting from a parametric copula function in which the parameter varies with a covariate, and leaving the marginals unspecified. Consequently, the unknown parts in the model are the parameter function and the unknown marginals. The authors use a local pseudo-likelihood with nonparametrically estimated marginals approximating the unknown parameter function locally by a polynomial. Under this general setting, they prove the consistency of the estimators of the parameter function as well as its derivatives; they also establish asymptotic normality. Furthermore, they derive an expression for the theoretical optimal bandwidth and discuss practical bandwidth selection. They illustrate the performance of the estimation procedure with data-driven bandwidth selection via a simulation study and a real-data case.
Keywords: Asymptotic normality; Conditional copula; Consistency; Local polynomial fitting; Semiparametric estimation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X1200084X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:110:y:2012:i:c:p:43-73
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2012.04.001
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().