Multivariate geometric distributions, (logarithmically) monotone sequences, and infinitely divisible laws
Jan-Frederik Mai,
Matthias Scherer and
Natalia Shenkman
Journal of Multivariate Analysis, 2013, vol. 115, issue C, 457-480
Abstract:
Two stochastic representations of multivariate geometric distributions are analyzed, both are obtained by lifting the lack-of-memory (LM) property of the univariate geometric law to the multivariate case. On the one hand, the narrow-sense multivariate geometric law can be considered a discrete equivalent of the well-studied Marshall–Olkin exponential law. On the other hand, the more general wide-sense geometric law is shown to be characterized by the LM property and can differ significantly from its continuous counterpart, e.g., by allowing for negative pairwise correlations.
Keywords: Multivariate geometric law; Lack-of-memory; Exchangeability; Completely monotone sequence; De Finetti’s theorem; Infinitely divisible law (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X12002710
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:115:y:2013:i:c:p:457-480
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2012.11.012
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().