Empirical likelihood for linear transformation models with interval-censored failure time data
Zhigang Zhang and
Yichuan Zhao
Journal of Multivariate Analysis, 2013, vol. 116, issue C, 398-409
Abstract:
For regression analysis of interval-censored failure time data, Zhang et al. (2005) [40] proposed an estimating equation approach to fit linear transformation models. In this paper, we develop two empirical likelihood (EL) inference approaches for the regression parameters based on the generalized estimating equations. The limiting distributions of log-empirical likelihood ratios are derived and empirical likelihood confidence intervals for any specified component of regression parameters are obtained. We carry out extensive simulation studies to compare the proposed methods with the method discussed by Zhang et al. (2005) [40]. The simulation results demonstrate that the EL and jackknife EL methods for linear transformation models have better performance than the existing normal approximation method based on coverage probability of confidence intervals in most cases, and they enable us to overcome an under-coverage problem for the confidence intervals of the regression parameters using a normal approximation when sample sizes are small and right censoring is heavy. Two real data examples are provided to illustrate our procedures.
Keywords: Confidence intervals/regions; Coverage probability; Interval-censored failure time data; Jackknife empirical likelihood; Linear transformation models; Estimating equations (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X13000043
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:116:y:2013:i:c:p:398-409
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2013.01.003
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().