On sample ranges from two sets of heterogenous random variables
Weiyong Ding,
Gaofeng Da and
Peng Zhao
Journal of Multivariate Analysis, 2013, vol. 116, issue C, 63-73
Abstract:
As one of the criteria for comparing variabilities among distributions, the sample range has attracted considerable attention in past decades. In this paper, we establish stochastic comparison results of sample ranges arising from two sets of heterogeneous exponential samples. It is shown that the reversed hazard rate of the sample range is a Schur-convex function of the parameter vector while its distribution function is a Schur-concave function of the vector of logarithms of the coordinates of the parameter vector. Moreover, when samples follow the proportional hazard rates models, we prove that the distribution function of the sample range is Schur-concave in the parameter vector, thereby extending several results known in the literature including Kochar and Rojo (1996) [13], Kochar and Xu (2007) [14] and Zhao and Zhang (2012) [31].
Keywords: Majorization; p-larger; Proportional hazard rates model; Sample range; Reversed hazard rate ordering; Usual stochastic ordering (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X12002680
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:116:y:2013:i:c:p:63-73
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2012.11.009
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().