Confidence regions for level sets
Enno Mammen and
Wolfgang Polonik
Journal of Multivariate Analysis, 2013, vol. 122, issue C, 202-214
Abstract:
This paper discusses a universal approach to the construction of confidence regions for level sets {h(x)≥0}⊂Rq of a function h of interest. The proposed construction is based on a plug-in estimate of the level sets using an appropriate estimate ĥn of h. The approach provides finite sample upper and lower confidence limits. This leads to generic conditions under which the constructed confidence regions achieve a prescribed coverage level asymptotically. The construction requires an estimate of quantiles of the distribution of supΔn|ĥn(x)−h(x)| for appropriate sets Δn⊂Rq. In contrast to related work from the literature, the existence of a weak limit for an appropriately normalized process {ĥn(x),x∈D} is not required. This adds significantly to the challenge of deriving asymptotic results for the corresponding coverage level. Our approach is exemplified in the case of a density level set utilizing a kernel density estimator and a bootstrap procedure.
Keywords: Level sets; Nonparametric curve estimation; Kernel density estimation; Smooth bootstrap (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X13001498
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:122:y:2013:i:c:p:202-214
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2013.07.017
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().