Geometric interpretation of the residual dependence coefficient
Natalia Nolde
Journal of Multivariate Analysis, 2014, vol. 123, issue C, 85-95
Abstract:
The residual dependence coefficient was originally introduced by Ledford and Tawn (1996) [25] as a measure of residual dependence between extreme values in the presence of asymptotic independence. We present a geometric interpretation of this coefficient with the additional assumptions that the random samples from a given distribution can be scaled to converge onto a limit set and that the marginal distributions have Weibull-type tails. This result leads to simple and intuitive computations of the residual dependence coefficient for a variety of distributions.
Keywords: Asymptotic independence; Residual dependence coefficient; Sample clouds; Limit set; Multivariate density; Geometric approach (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X13001796
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:123:y:2014:i:c:p:85-95
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2013.08.018
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().