EconPapers    
Economics at your fingertips  
 

Distributions on matrix moment spaces

Holger Dette, Matthias Guhlich and Jan Nagel

Journal of Multivariate Analysis, 2014, vol. 131, issue C, 17-31

Abstract: In this paper we define distributions on the moment spaces corresponding to p×p real or complex matrix measures on the real line with an unbounded support. For random vectors on the unbounded matricial moment spaces we prove the convergence in distribution to the Gaussian orthogonal ensemble or the Gaussian unitary ensemble, respectively.

Keywords: Moment spaces; Random matrices; Matrix measures; Random moments; Gaussian ensemble; Laguerre ensemble; Wigner’s semicircle law; Marchenko–Pastur law (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X14001456
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:131:y:2014:i:c:p:17-31

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2014.06.015

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:131:y:2014:i:c:p:17-31