Robust estimating equation-based sufficient dimension reduction
Jingke Zhou,
Wangli Xu and
Lixing Zhu
Journal of Multivariate Analysis, 2015, vol. 134, issue C, 99-118
Abstract:
In this paper, from the estimating equation-based sufficient dimension reduction method in the literature, its robust version is proposed to alleviate the impact from outliers. To achieve this, a robust nonparametric regression estimator is suggested. The estimator is plugged in the estimating equation of the semiparametric sufficient dimension reduction to obtain robust estimator for the central subspace. The asymptotic properties and robustness of the estimator are investigated. Numerical simulation and real data analysis are conducted to examine the performance of the estimators.
Keywords: Robust conditional density estimation; Robust nonparametric regression; Robust sufficient dimension reduction; Semiparametric inference; Outliers (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X14002334
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:134:y:2015:i:c:p:99-118
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2014.10.006
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().