Extreme negative dependence and risk aggregation
Bin Wang and
Ruodu Wang
Journal of Multivariate Analysis, 2015, vol. 136, issue C, 12-25
Abstract:
We introduce the concept of an extremely negatively dependent (END) sequence of random variables with a given common marginal distribution. An END sequence has a partial sum which, subtracted by its mean, does not diverge as the number of random variables goes to infinity. We show that an END sequence always exists for any given marginal distributions with a finite mean and we provide a probabilistic construction. Through such a construction, the partial sum of identically distributed but dependent random variables is controlled by a random variable that depends only on the marginal distribution of the sequence. We provide some properties and examples of our construction. The new concept and derived results are used to obtain asymptotic bounds for risk aggregation with dependence uncertainty.
Keywords: Negative dependence; Variance reduction; Sums of random variables; Central limit theorem; Risk aggregation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X15000111
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:136:y:2015:i:c:p:12-25
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2015.01.006
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().