EconPapers    
Economics at your fingertips  
 

Hypergeometric functions of matrix arguments and linear statistics of multi-spiked Hermitian matrix models

Damien Passemier, Matthew R. McKay and Yang Chen

Journal of Multivariate Analysis, 2015, vol. 139, issue C, 124-146

Abstract: This paper derives central limit theorems (CLTs) for general linear spectral statistics (LSS) of three important multi-spiked Hermitian random matrix ensembles. The first is the most common spiked scenario, proposed by Johnstone, which is a central Wishart ensemble with fixed-rank perturbation of the identity matrix, the second is a non-central Wishart ensemble with fixed-rank noncentrality parameter, and the third is a similarly defined non-central F ensemble. These CLT results generalize our recent work Passemier (2015) to account for multiple spikes, which is the most common scenario met in practice. The generalization is non-trivial, as it now requires dealing with hypergeometric functions of matrix arguments. To facilitate our analysis, for a broad class of such functions, we first generalize a recent result of Onatski (2014) to present new contour integral representations, which are particularly suitable for computing large-dimensional properties of spiked matrix ensembles. Armed with such representations, our CLT formulas are derived for each of the three spiked models of interest by employing the Coulomb fluid method from random matrix theory along with saddlepoint techniques. We find that for each matrix model, and for general LSS, the individual spikes contribute additively to yield a O(1) correction term to the asymptotic mean of the linear statistic, which we specify explicitly, whilst having no effect on the leading order terms of the mean or variance.

Keywords: Random matrix theory; High-dimensional statistics; Spiked population model; Hypergeometric function; Wishart ensembles; F-matrix (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X15000652
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:139:y:2015:i:c:p:124-146

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2015.03.001

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:139:y:2015:i:c:p:124-146