The random matrix regime of Maronna’s M-estimator with elliptically distributed samples
Romain Couillet,
Frédéric Pascal and
Jack W. Silverstein
Journal of Multivariate Analysis, 2015, vol. 139, issue C, 56-78
Abstract:
This article demonstrates that the robust scatter matrix estimator CˆN∈CN×N of a multivariate elliptical population x1,…,xn∈CN originally proposed by Maronna in 1976, and defined as the solution (when existent) of an implicit equation, behaves similar to a well-known random matrix model in the limiting regime where the population N and sample n sizes grow at the same speed. We show precisely that CˆN∈CN×N is defined for all n large with probability one and that, under some light hypotheses, ‖CˆN−SˆN‖→0 almost surely in spectral norm, where SˆN follows a classical random matrix model. As a corollary, the limiting eigenvalue distribution of CˆN is derived. This analysis finds applications in the fields of statistical inference and signal processing.
Keywords: Random matrix theory; Robust estimation; Elliptical distribution (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X15000676
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:139:y:2015:i:c:p:56-78
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2015.02.020
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().