EconPapers    
Economics at your fingertips  
 

Robust spiked random matrices and a robust G-MUSIC estimator

Romain Couillet

Journal of Multivariate Analysis, 2015, vol. 140, issue C, 139-161

Abstract: A class of robust estimators of scatter applied to information-plus-impulsive noise samples is studied, where the sample information matrix is assumed of low rank; this generalizes the study (Couillet et al., 2013) (restricted to a noise only setting) to spiked random matrix models. It is precisely shown that, as opposed to sample covariance matrices which may have asymptotically unbounded (eigen-)spectrum due to the sample impulsiveness, the robust estimator of scatter has bounded spectrum and may contain isolated eigenvalues which we fully characterize. We show that, if found beyond a certain detectability threshold, these eigenvalues allow one to perform statistical inference on the eigenvalues and eigenvectors of the information matrix. We use this result to derive new eigenvalue and eigenvector estimation procedures, which we apply in practice to the popular array processing problem of angle of arrival estimation. This gives birth to an improved algorithm based on the MUSIC method, which we refer to as robust G-MUSIC.

Keywords: Random matrix theory; Robust estimation; Spiked models; MUSIC (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X15001244
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:140:y:2015:i:c:p:139-161

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2015.05.009

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:140:y:2015:i:c:p:139-161