EconPapers    
Economics at your fingertips  
 

A high dimensional two-sample test under a low dimensional factor structure

Yingying Ma, Wei Lan and Hansheng Wang

Journal of Multivariate Analysis, 2015, vol. 140, issue C, 162-170

Abstract: Existing high dimensional two-sample tests usually assume that different elements of a high dimensional predictor are weakly dependent. Such a condition can be violated when data follow a low dimensional latent factor structure. As a result, the recently developed two-sample testing methods are not directly applicable. To fulfill such a theoretical gap, we propose here a Factor Adjusted two-Sample Testing (FAST) procedure to accommodate the low dimensional latent factor structure. Under the null hypothesis, together with fairly weak technical conditions, we show that the proposed test statistic is asymptotically distributed as a weighted chi-square distribution with a finite number of degrees of freedom. This leads to a totally different test statistic and inference procedure, as compared with those of Bai and Saranadasa (1996) and Chen and Qin (2010). Simulation studies are carried out to examine its finite sample performance. A real example on China stock market is analyzed for illustration purpose.

Keywords: China stock market; High-dimensional data; Hypothesis testing; Latent factor structure; Two-sample test (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X15001207
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:140:y:2015:i:c:p:162-170

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2015.05.005

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:140:y:2015:i:c:p:162-170