EconPapers    
Economics at your fingertips  
 

Weighted ℓ1-penalized corrected quantile regression for high dimensional measurement error models

Abhishek Kaul and Hira L. Koul

Journal of Multivariate Analysis, 2015, vol. 140, issue C, 72-91

Abstract: Standard formulations of prediction problems in high dimension regression models assume the availability of fully observed covariates and sub-Gaussian and homogeneous model errors. This makes these methods inapplicable to measurement errors models where covariates are unobservable and observations are possibly non sub-Gaussian and heterogeneous. We propose a weighted penalized corrected quantile estimator for regression parameters in linear regression models with additive measurement errors, where unobservable covariate is nonrandom. The proposed estimators forgo the need for the above mentioned model assumptions. We study these estimators in a high dimensional sparse setup where the dimensionality can grow exponentially with the sample size. We provide bounds for the statistical error associated with the estimation, that hold with asymptotic probability 1, thereby providing the ℓ1-consistency of the proposed estimator. We also establish the model selection consistency in terms of the correctly estimated zero components of the parameter vector. A simulation study that investigates the finite sample accuracy of the proposed estimator is also included in the paper.

Keywords: ℓ1-consistency; Model selection consistency (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X1500113X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:140:y:2015:i:c:p:72-91

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2015.04.009

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:140:y:2015:i:c:p:72-91