EconPapers    
Economics at your fingertips  
 

Two-sample extended empirical likelihood for estimating equations

Min Tsao and Fan Wu

Journal of Multivariate Analysis, 2015, vol. 142, issue C, 1-15

Abstract: We propose a two-sample extended empirical likelihood for inference on the difference between two p-dimensional parameters defined by estimating equations. The standard two-sample empirical likelihood for the difference is Bartlett correctable but its domain is a bounded subset of the parameter space. We expand its domain through a composite similarity transformation to derive the two-sample extended empirical likelihood which is defined on the full parameter space. The extended empirical likelihood has the same asymptotic distribution as the standard one and can also achieve the second-order accuracy of the Bartlett correction. We include two applications to illustrate the use of two-sample empirical likelihood methods and to demonstrate the superior coverage accuracy of the extended empirical likelihood confidence regions.

Keywords: Bartlett correction; Composite similarity transformation; Extended empirical likelihood; Estimating equation; Similarity transformation; Two-sample empirical likelihood (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X15001785
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:142:y:2015:i:c:p:1-15

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2015.07.009

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:142:y:2015:i:c:p:1-15