On the closure of relational models
Anna Klimova and
Tamás Rudas
Journal of Multivariate Analysis, 2016, vol. 143, issue C, 440-452
Abstract:
Relational models for contingency tables are generalizations of log-linear models, allowing effects associated with arbitrary subsets of cells in a possibly incomplete table, and not necessarily containing the overall effect. In this generality, the MLEs under Poisson and multinomial sampling are not always identical. This paper deals with the theory of maximum likelihood estimation in the case when there are observed zeros in the data. A unique MLE to such data is shown to always exist in the set of pointwise limits of sequences of distributions in the original model. This set is equal to the closure of the original model with respect to the Bregman information divergence. The same variant of iterative scaling may be used to compute the MLE whether it is in the original model or in its closure.
Keywords: Algebraic variety; Bregman divergence; Contingency table; Extended MLE; Iterative scaling; Relational model (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X15002559
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:143:y:2016:i:c:p:440-452
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2015.10.005
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().