Feature selection for functional data
Ricardo Fraiman,
Yanina Gimenez and
Marcela Svarc
Journal of Multivariate Analysis, 2016, vol. 146, issue C, 191-208
Abstract:
We herein introduce a general procedure to capture the relevant information from a functional data set in relation to a statistical method used to analyze the data, such as, classification, regression or principal components. The aim is to identify a small subset of functions that can “better explain” the model, highlighting its most important features. We obtain consistency results for our proposals. The computational aspects are analyzed, a heuristic stochastic algorithm is introduced and real data sets are studied.
Keywords: Variable selection; Classification; Regression; Principal components (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X15002201
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:146:y:2016:i:c:p:191-208
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2015.09.006
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().