EconPapers    
Economics at your fingertips  
 

Worst possible sub-directions in high-dimensional models

Sara van de Geer

Journal of Multivariate Analysis, 2016, vol. 146, issue C, 248-260

Abstract: We examine the rate of convergence of the Lasso estimator of lower dimensional components of the high-dimensional parameter. Under bounds on the ℓ1-norm on the worst possible sub-direction these rates are of order |J|logp/n where p is the total number of parameters, n is the number of observations and J⊂{1,…,p} represents a subset of the parameters. We also derive rates in sup-norm in terms of the rate of convergence in ℓ1-norm. The irrepresentable condition on a set J requires that the ℓ1-norm of the worst possible sub-direction is sufficiently smaller than one. In that case sharp oracle results can be obtained. Moreover, if the coefficients in J are small enough the Lasso will put these coefficients to zero. By de-sparsifying one obtains fast rates in supremum norm without conditions on the worst possible sub-direction. The results are extended to M-estimation with ℓ1-penalty for generalized linear models and exponential families. For the graphical Lasso this leads to an extension of known results to the case where the precision matrix is only approximately sparse. The bounds we provide are non-asymptotic but we also present asymptotic formulations for ease of interpretation.

Keywords: De-sparsifying; Graphical Lasso; Irrepresentable condition; Lasso; Oracle rates; Sub-direction (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X15002328
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:146:y:2016:i:c:p:248-260

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2015.09.018

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:146:y:2016:i:c:p:248-260