Sparse clustering of functional data
Davide Floriello and
Valeria Vitelli
Journal of Multivariate Analysis, 2017, vol. 154, issue C, 1-18
Abstract:
We consider the problem of clustering functional data while jointly selecting the most relevant features for classification. Functional sparse clustering is here analytically defined as a variational problem with a hard thresholding constraint ensuring the sparsity of the solution. First, a unique solution to sparse clustering with hard thresholding in finite dimensions is proved to exist. Then, the infinite-dimensional generalization is given and proved to have a unique solution under reasonable assumptions. Both the multivariate and the functional versions of sparse clustering with hard thresholding exhibit improvements on other standard and sparse clustering strategies on simulated data. A real functional data application is also shown.
Keywords: Sparse clustering; Functional data; Weighted distance; Variational problem (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16301208
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:154:y:2017:i:c:p:1-18
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2016.10.008
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().