Nonparametric estimation of a function from noiseless observations at random points
Benedikt Bauer,
Luc Devroye,
Michael Kohler,
Adam Krzyżak and
Harro Walk
Journal of Multivariate Analysis, 2017, vol. 160, issue C, 93-104
Abstract:
In this paper we study the problem of estimating a function from n noiseless observations of function values at randomly chosen points. These points are independent copies of a random variable whose density is bounded away from zero on the unit cube and vanishes outside. The function to be estimated is assumed to be (p,C)-smooth, i.e., (roughly speaking) it is p times continuously differentiable. Our main results are that the supremum norm error of a suitably defined spline estimate is bounded in probability by {ln(n)∕n}p∕d for arbitrary p and d and that this rate of convergence is optimal in minimax sense.
Keywords: Multivariate scattered data approximation; Rate of convergence; Supremum norm error (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X1730338X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:160:y:2017:i:c:p:93-104
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2017.05.010
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().