EconPapers    
Economics at your fingertips  
 

Nonparametric estimation of a function from noiseless observations at random points

Benedikt Bauer, Luc Devroye, Michael Kohler, Adam Krzyżak and Harro Walk

Journal of Multivariate Analysis, 2017, vol. 160, issue C, 93-104

Abstract: In this paper we study the problem of estimating a function from n noiseless observations of function values at randomly chosen points. These points are independent copies of a random variable whose density is bounded away from zero on the unit cube and vanishes outside. The function to be estimated is assumed to be (p,C)-smooth, i.e., (roughly speaking) it is p times continuously differentiable. Our main results are that the supremum norm error of a suitably defined spline estimate is bounded in probability by {ln(n)∕n}p∕d for arbitrary p and d and that this rate of convergence is optimal in minimax sense.

Keywords: Multivariate scattered data approximation; Rate of convergence; Supremum norm error (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X1730338X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:160:y:2017:i:c:p:93-104

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2017.05.010

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:160:y:2017:i:c:p:93-104