EconPapers    
Economics at your fingertips  
 

Functional envelope for model-free sufficient dimension reduction

Xin Zhang, Chong Wang and Yichao Wu

Journal of Multivariate Analysis, 2018, vol. 163, issue C, 37-50

Abstract: In this article, we introduce the functional envelope for sufficient dimension reduction and regression with functional and longitudinal data. Functional sufficient dimension reduction methods, especially the inverse regression estimation family of methods, usually involve solving generalized eigenvalue problems and inverting the infinite-dimensional covariance operator. With the notion of functional envelope, essentially a special type of sufficient dimension reduction subspace, we develop a generic method to circumvent the difficulties in solving the generalized eigenvalue problems and inverting the covariance directly. We derive the geometric characteristics of the functional envelope and establish the asymptotic properties of related functional envelope estimators under mild conditions. The functional envelope estimators have shown promising performance in extensive simulation studies and real data analysis.

Keywords: Envelope model; Functional data; Functional inverse regression; Sufficient dimension reduction (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16301956
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:163:y:2018:i:c:p:37-50

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2017.09.010

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:163:y:2018:i:c:p:37-50