Function-on-function regression with thousands of predictive curves
Xin Qi and
Ruiyan Luo
Journal of Multivariate Analysis, 2018, vol. 163, issue C, 51-66
Abstract:
With the advance of technology, thousands of curves can be simultaneously recorded by electronic devices, such as simultaneous EEG and fMRI data. To study the relationship between these curves, we consider a functional linear regression model with functional response and functional predictors, where the number of predictive curves is much larger than the sample size. The high dimensionality of this problem poses theoretical and practical difficulties for the existing methods, including estimation inconsistency and prediction inaccuracy. Motivated by the simultaneous EEG and fMRI data, we focus on models with sparsity structures where most of the coefficient functions of the predictive curves have small norms. To take advantage of this sparsity structure and the smoothness of coefficient functions, we propose a simultaneous sparse-smooth penalty which is incorporated into a generalized functional eigenvalue problem to obtain estimates of the model. We establish the asymptotic upper bounds for the prediction and estimation errors as both the sample size and the number of predictive curves go to infinity. We implement the proposed method in the R package FRegSigComp. Simulation studies show that the proposed method has good predictive performance for models with sparsity structures. The proposed method is applied to a simultaneous EEG and fMRI dataset.
Keywords: Function-on-function regression; High-dimension; Simultaneous sparse-smooth penalty (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16302536
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:163:y:2018:i:c:p:51-66
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2017.10.002
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().