EconPapers    
Economics at your fingertips  
 

Detection of block-exchangeable structure in large-scale correlation matrices

Samuel Perreault, Thierry Duchesne and Johanna G. Nešlehová

Journal of Multivariate Analysis, 2019, vol. 169, issue C, 400-422

Abstract: Correlation matrices are omnipresent in multivariate data analysis. When the number d of variables is large, the sample estimates of correlation matrices are typically noisy and conceal underlying dependence patterns. We consider the case when the variables can be grouped into K clusters with exchangeable dependence; this assumption is often made in applications, e.g., in finance and econometrics. Under this partial exchangeability condition, the corresponding correlation matrix has a block structure and the number of unknown parameters is reduced from d(d−1)∕2 to at most K(K+1)∕2. We propose a robust algorithm based on Kendall’s rank correlation to identify the clusters without assuming the knowledge of K a priori or anything about the margins except continuity. The corresponding block-structured estimator performs considerably better than the sample Kendall rank correlation matrix when KKeywords: Agglomerative clustering; Constrained maximum likelihood; Copula; Kendall’s tau; Parameter clustering; Shrinkage (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X18303713
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:169:y:2019:i:c:p:400-422

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2018.10.009

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:169:y:2019:i:c:p:400-422