Bivariate integer-autoregressive process with an application to mutual fund flows
Serge Darolles,
Gaëlle Le Fol,
Yang Lu and
Ran Sun
Journal of Multivariate Analysis, 2019, vol. 173, issue C, 181-203
Abstract:
We propose a new family of bivariate nonnegative integer-autoregressive (BINAR) models for count process data. We first generalize the existing BINAR(1) model by allowing for dependent thinning operators and arbitrary innovation distribution. The extended family allows for intuitive interpretation, as well as tractable aggregation and stationarity properties. We then introduce higher order BINAR(p) and BINAR(∞) dynamics to accommodate more flexible serial dependence patterns. So far, the literature has regarded such models as computationally intractable. We show that the extended BINAR family allows for closed-form predictive distributions at any horizons and for any values of p, which significantly facilitates non-linear forecasting and likelihood based estimation. Finally, a BINAR(∞) model with memory persistence is applied to open-ended mutual fund purchase and redemption order counts.
Keywords: Compound autoregressive process; Memory persistence; Mutual funds; Non-linear forecasting (search for similar items in EconPapers)
JEL-codes: C32 C53 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X18304329
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Bivariate integer-autoregressive process with an application to mutual fund flows (2019) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:173:y:2019:i:c:p:181-203
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2019.02.015
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().