Robust functional regression based on principal components
Ioannis Kalogridis and
Stefan Van Aelst
Journal of Multivariate Analysis, 2019, vol. 173, issue C, 393-415
Abstract:
Functional data analysis is a fast evolving branch of modern statistics and the functional linear model has become popular in recent years. However, most estimation methods for this model rely on generalized least squares procedures and therefore are sensitive to atypical observations. To remedy this, we propose a two-step estimation procedure that combines robust functional principal components and robust linear regression. Moreover, we propose a transformation that reduces the curvature of the estimators and can be advantageous in many settings. For these estimators we prove Fisher-consistency and consistency for finite-dimensional processes under mild regularity conditions. Their influence function is also studied. Simulation experiments show that the proposed estimators have reasonable efficiency, protect against outlying observations, produce smooth estimates, and perform well in comparison to existing approaches.
Keywords: Functional linear model; Functional principal components; Influence function; Robustness (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X1830407X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:173:y:2019:i:c:p:393-415
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2019.04.003
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().