Inferential procedures for partially observed functional data
David Kraus
Journal of Multivariate Analysis, 2019, vol. 173, issue C, 583-603
Abstract:
In functional data analysis it is usually assumed that all functions are completely, densely or sparsely observed on the same domain. Recent applications have brought attention to situations where each functional variable may be observed only on a subset of the domain while no information about the function is available on the complement. Various advanced methods for such partially observed functional data have already been developed but, interestingly, some essential methods, such as K-sample tests of equal means or covariances and confidence intervals for eigenvalues and eigenfunctions, are lacking. Without requiring any complete curves in the data, we derive asymptotic distributions of estimators of the mean function, covariance operator and eigenelements and construct hypothesis tests and confidence intervals. To overcome practical difficulties with storing large objects in computer memory, which arise due to partial observation, we use the nonparametric bootstrap approach. The proposed methods are investigated theoretically, in simulations and on a fragmentary functional data set from medical research.
Keywords: Bootstrap; Covariance operator; Functional data; K-sample test; Partial observation; Principal components (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X18304950
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:173:y:2019:i:c:p:583-603
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2019.05.002
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().