EconPapers    
Economics at your fingertips  
 

Roy’s largest root under rank-one perturbations: The complex valued case and applications

Prathapasinghe Dharmawansa, Boaz Nadler and Ofer Shwartz

Journal of Multivariate Analysis, 2019, vol. 174, issue C

Abstract: The largest eigenvalue of a single or a double Wishart matrix, both known as Roy’s largest root, plays an important role in a variety of applications. Recently, via a small noise perturbation approach with fixed dimension and degrees of freedom, Johnstone and Nadler derived simple yet accurate approximations to its distribution in the real valued case, under a rank-one alternative. In this paper, we extend their results to the complex valued case for five common single matrix and double matrix settings. In addition, we study the finite sample distribution of the leading eigenvector. We present the utility of our results in several signal detection and communication applications, and illustrate their accuracy via simulations.

Keywords: Complex Wishart distribution; Rank-one perturbation; Roy’s largest root; Signal detection in noise (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X18302896
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:174:y:2019:i:c:s0047259x18302896

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2019.05.009

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:174:y:2019:i:c:s0047259x18302896