EconPapers    
Economics at your fingertips  
 

Composite likelihood estimation for a Gaussian process under fixed domain asymptotics

François Bachoc, Moreno Bevilacqua and Daira Velandia

Journal of Multivariate Analysis, 2019, vol. 174, issue C

Abstract: We study the problem of estimating the covariance parameters of a one-dimensional Gaussian process with exponential covariance function under fixed-domain asymptotics. We show that the weighted pairwise maximum likelihood estimator of the microergodic parameter can be consistent or inconsistent. This depends on the range of admissible parameter values in the likelihood optimization. On the other hand, the weighted pairwise conditional maximum likelihood estimator is always consistent. Both estimators are also asymptotically Gaussian when they are consistent. Their asymptotic variances are larger or strictly larger than that of the maximum likelihood estimator. A simulation study is presented in order to compare the finite sample behavior of the pairwise likelihood estimators with their asymptotic distributions. For more general covariance functions, an additional inconsistency result is provided, for the weighted pairwise maximum likelihood estimator of a variance parameter.

Keywords: Asymptotic normality; Consistency; Exponential model; Fixed-domain asymptotics; Gaussian processes; Large data sets; Microergodic parameters; Pairwise composite likelihood (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X18303841
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:174:y:2019:i:c:s0047259x18303841

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2019.104534

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:174:y:2019:i:c:s0047259x18303841