Dependence properties and Bayesian inference for asymmetric multivariate copulas
Julyan Arbel,
Marta Crispino and
Stéphane Girard
Journal of Multivariate Analysis, 2019, vol. 174, issue C
Abstract:
We study a broad class of asymmetric copulas introduced by Liebscher (2008) as a combination of multiple – usually symmetric – copulas. The main thrust of the paper is to provide new theoretical properties including exact tail dependence expressions and stability properties. A subclass of Liebscher copulas obtained by combining comonotonic copulas is studied in more detail.We establish further dependence properties for copulas of this class and show that they are characterized by an arbitrary number of singular components. Furthermore, we introduce a novel iterative representation for general Liebscher copulas which de facto insures uniform margins, thus relaxing a constraint of Liebscher’s original construction. Besides, we show that this iterative construction proves useful for inference by developing an Approximate Bayesian computation sampling scheme. This inferential procedure is demonstrated on simulated data and is compared to a likelihood-based approach in a setting where the latter is available.
Keywords: Approximate Bayesian computation; Asymmetric copulas; Dependence properties; Singular components (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X18306547
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:174:y:2019:i:c:s0047259x18306547
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2019.06.008
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().