Asymptotic properties of Dirichlet kernel density estimators
Frédéric Ouimet and
Raimon Tolosana-Delgado
Journal of Multivariate Analysis, 2022, vol. 187, issue C
Abstract:
We study theoretically, for the first time, the Dirichlet kernel estimator introduced by Aitchison and Lauder (1985) for the estimation of multivariate densities supported on the d-dimensional simplex. The simplex is an important case as it is the natural domain of compositional data and has been neglected in the literature on asymmetric kernels. The Dirichlet kernel estimator, which generalizes the (non-modified) unidimensional Beta kernel estimator from Chen (1999), is free of boundary bias and non-negative everywhere on the simplex. We show that it achieves the optimal convergence rate O(n−4/(d+4)) for the mean squared error and the mean integrated squared error, we prove its asymptotic normality and uniform strong consistency, and we also find an asymptotic expression for the mean integrated absolute error. To illustrate the Dirichlet kernel method and its favorable boundary properties, we present a case study on minerals processing.
Keywords: Dirichlet kernel; Beta kernel; Asymmetric kernel; Density estimation; Simplex; Boundary bias; Variance; Mean squared error; Mean integrated absolute error; Asymptotic normality; Strong consistency; Multivariate associated kernel (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X2100110X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:187:y:2022:i:c:s0047259x2100110x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2021.104832
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().