An overview of tests on high-dimensional means
Yuan Huang,
Changcheng Li,
Runze Li and
Songshan Yang
Journal of Multivariate Analysis, 2022, vol. 188, issue C
Abstract:
Testing high-dimensional means has many applications in scientific research. For instance, it is of great interest to test whether there is a difference of gene expressions between control and treatment groups in genetic studies. This can be formulated as a two-sample mean testing problem. However, the Hotelling T2 test statistic for the two-sample mean problem is no longer well defined due to singularity of the sample covariance matrix when the sample size is less than the dimension of data. Over the last two decades, the high-dimensional mean testing problem has received considerable attentions in the literature. This paper provides a selective overview of existing testing procedures in the literature. We focus on the motivation of the testing procedures, the insights into how to construct the test statistics and the connections, and comparisons of different methods.
Keywords: Hotelling’s T2 test; Multiple comparison; Projection test; Regularization method (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X21000919
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:188:y:2022:i:c:s0047259x21000919
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2021.104813
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().