Recent advances in shrinkage-based high-dimensional inference
Olha Bodnar,
Taras Bodnar and
Nestor Parolya
Journal of Multivariate Analysis, 2022, vol. 188, issue C
Abstract:
Recently, the shrinkage approach has increased its popularity in theoretical and applied statistics, especially, when point estimators for high-dimensional quantities have to be constructed. A shrinkage estimator is usually obtained by shrinking the sample estimator towards a deterministic target. This allows to reduce the high volatility that is commonly present in the sample estimator by introducing a bias such that the mean-square error of the shrinkage estimator becomes smaller than the one of the corresponding sample estimator. The procedure has shown great advantages especially in the high-dimensional problems where, in general case, the sample estimators are not consistent without imposing structural assumptions on model parameters.
Keywords: Covariance matrix; High-dimensional asymptotics; High-dimensional optimal portfolio; Mean vector; Precision matrix; Random matrix theory; Shrinkage estimation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X21001044
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:188:y:2022:i:c:s0047259x21001044
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2021.104826
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().