Canonical quantile regression
Stephen Portnoy
Journal of Multivariate Analysis, 2022, vol. 192, issue C
Abstract:
In using multiple regression methods for prediction, one often considers the linear combination of explanatory variables as an index. Seeking a single such index when here are multiple responses is rather more complicated. One classical approach is to use the coefficients from the leading Canonical Correlation. However, methods based on variances are unable to disaggregate responses by quantile effects, lack robustness, and rely on normal assumptions for inference. An alternative canonical regression quantile (CanRQ) approach seeks to find the linear combination of explanatory variables that best predicts the τth quantile of the best linear combination of response variables. Applying this “regression” approach more generally, subsequent linear combinations are chosen to explain what earlier CanRQ components failed to explain. While numerous technical issues need to be addressed, the major methodological issue concerns directionality: a quantile analysis requires that the notion of a larger or smaller response be well-defined. To address this issue, the sign of at least one response coefficient will be assumed to be non-negative. CanRQ results can be quite different from those of classical canonical correlation, and can offer the kind of improvements offered by regression quantiles in linear models.
Keywords: Canonical Correlation; Index prediction; Multivariate regression; Regression quantile (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X22000768
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:192:y:2022:i:c:s0047259x22000768
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2022.105071
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().