Strong Convergence of the Empirical Distribution of Eigenvalues of Large Dimensional Random Matrices
J. W. Silverstein
Journal of Multivariate Analysis, 1995, vol. 55, issue 2, 331-339
Abstract:
Let X be n - N containing i.i.d. complex entries with E X11 - EX112 = 1, and T an n - n random Hermitian nonnegative definite, independent of X. Assume, almost surely, as n --> [infinity], the empirical distribution function (e.d.f.) of the eigenvalues of T converges in distribution, and the ratio n/N tends to a positive number. Then it is shown that, almost surely, the e.d.f. of the eigenvalues of (1/N) XX*T converges in distribution. The limit is nonrandom and is characterized in terms of its Stieltjes transform, which satisfies a certain equation.
Date: 1995
References: Add references at CitEc
Citations: View citations in EconPapers (107)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(85)71083-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:55:y:1995:i:2:p:331-339
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().