EconPapers    
Economics at your fingertips  
 

On Estimating the Dimensionality in Canonical Correlation Analysis

Brenda K. Gunderson and Robb J. Muirhead

Journal of Multivariate Analysis, 1997, vol. 62, issue 1, 121-136

Abstract: In canonical correlation analysis the number of nonzero population correlation coefficients is called the dimensionality. Asymptotic distributions of the dimensionalities estimated by Mallows's criterion and Akaike's criterion are given for nonnormal multivariate populations with finite fourth moments. These distributions have a simple form in the case of elliptical populations, and modified criteria are proposed which adjust for nonzero kurtosis. An estimation method based on a marginal likelihood function for the dimensionality is introduced and the asymptotic distribution of the corresponding estimator is derived for multivariate normal populations. It is shown that this estimator is not consistent, but that a simple modification yields consistency. An overall comparison of the various estimation methods is conducted through simulation studies.

Keywords: Akaike's; information; criterion; canonical; correlation; coefficient; dimensionality; elliptical; distribution; kurtosis; likelihood; Mallows's; criterion (search for similar items in EconPapers)
Date: 1997
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(97)91677-8
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:62:y:1997:i:1:p:121-136

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:62:y:1997:i:1:p:121-136