Dimensionality in Manova Tested by a Closed Testing Procedure
Tadeusz Calinski and
Michel Lejeune
Journal of Multivariate Analysis, 1998, vol. 65, issue 2, 181-194
Abstract:
The decision on dimensionality of the space spanned by general linear functions of the parameter matrix of a MANOVA model is considered. This problem is related to the investigation, whether graphically or analytically, of significant empirical departures from the overall null hypothesis on these functions. A closed testing procedure for a sequence of relevant hypotheses is proposed. Unlike the classical procedures based on asymptotic distributions of the likelihood ratio statistics, the proposed method ensures that the Type I familywise error rate does not exceed the nominal[alpha]-level. Also, it is consistent with testing the overall null hypothesis, while relying on tests of subsequent linear hypotheses implied by the former. Examples are given to compare the proposed procedure with a classical one.
Keywords: canonical analysis; multivariate linear hypothesis; MANOVA model; Lawley-Hotelling trace; testing dimensionality hypotheses; closed testing procedure (search for similar items in EconPapers)
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(97)91722-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:65:y:1998:i:2:p:181-194
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().