A large deviation limit theorem for multivariate distributions
Peter Phillips
Journal of Multivariate Analysis, 1977, vol. 7, issue 1, 50-62
Abstract:
A local limit theorem for large deviations of o(n)1/2, where n is the sample size, is developed for multivariate statistics which are more general than standardised means, but which depend on n in much the same way. In particular, the cumulants of the statistic are of the same order in n-1/2 as those of a standardised mean. The theory is derived under conditions which correspond to those in earlier work by Richter on limit theorems for standardised means and by Chambers on the validity of Edgeworth expansions for multivariate statistics.
Keywords: Large; deviations; multivariate; statistics; steepest; descents (search for similar items in EconPapers)
Date: 1977
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(77)90030-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:7:y:1977:i:1:p:50-62
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().