Empirical Likelihood Semiparametric Regression Analysis under Random Censorship
Qi-Hua Wang and
Gang Li
Journal of Multivariate Analysis, 2002, vol. 83, issue 2, 469-486
Abstract:
This paper considers large sample inference for the regression parameter in a partly linear model for right censored data. We introduce an estimated empirical likelihood for the regression parameter and show that its limiting distribution is a mixture of central chi-squared distributions. A Monte Carlo method is proposed to approximate the limiting distribution. This enables one to make empirical likelihood-based inference for the regression parameter. We also develop an adjusted empirical likelihood method which only appeals to standard chi-square tables. Finite sample performance of the proposed methods is illustrated in a simulation study.
Keywords: empirical; likelihood; partly; linear; model; product-limit; estimator; random; censorship (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(01)92060-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:83:y:2002:i:2:p:469-486
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().