Reducing variance in nonparametric surface estimation
Ming-Yen Cheng and
Peter Hall
Journal of Multivariate Analysis, 2003, vol. 86, issue 2, 375-397
Abstract:
We suggest a method for reducing variance in nonparametric surface estimation. The technique is applicable to a wide range of inferential problems, including both density estimation and regression, and to a wide variety of estimator types. It is based on estimating the contours of a surface by minimising deviations of elementary surface estimates along a quadratic curve. Once a contour estimate has been obtained, the final surface estimate is computed by averaging conventional surface estimates along a portion of the contour. Theoretical and numerical properties of the technique are discussed.
Keywords: Bandwidth; Boundary; effect; Kernel; method; Nonparametric; density; estimation; Nonparametric; regression; Variance; reduction (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(02)00032-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:86:y:2003:i:2:p:375-397
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().