Matrix shrinkage of high-dimensional expectation vectors
V. I. Serdobolskii
Journal of Multivariate Analysis, 2005, vol. 92, issue 2, 281-297
Abstract:
The shrinkage effect is studied in estimating the expectation vector by weighting of mean vector components in the system of coordinates in which sample covariance matrix is diagonal. The Kolmogorov asymptotic approach is applied, when sample size increases together with the dimension, so that their ratio tends to a constant. Under some weak assumptions on the dependence of variables, the limit expression for the principal part of the quadratic risk function is found in dependence of weighting function. It is proved that the limit risk function does not depend on distributions. The extremum problem is solved, and an approximately unimprovable distribution-free estimator of the expectation vector is proposed.
Keywords: Shrinkage; estimators; Matrix; shrinkage; Expectation; vectors; estimators; Large; dimension (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00207-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:92:y:2005:i:2:p:281-297
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().