Methods for improvement in estimation of a normal mean matrix
Hisayuki Tsukuma and
Tatsuya Kubokawa
Journal of Multivariate Analysis, 2007, vol. 98, issue 8, 1592-1610
Abstract:
This paper is concerned with the problem of estimating a matrix of means in multivariate normal distributions with an unknown covariance matrix under invariant quadratic loss. It is first shown that the modified Efron-Morris estimator is characterized as a certain empirical Bayes estimator. This estimator modifies the crude Efron-Morris estimator by adding a scalar shrinkage term. It is next shown that the idea of this modification provides a general method for improvement of estimators, which results in the further improvement on several minimax estimators. As a new method for improvement, an adaptive combination of the modified Stein and the James-Stein estimators is also proposed and is shown to be minimax. Through Monte Carlo studies of the risk behaviors, it is numerically shown that the proposed, combined estimator inherits the nice risk properties of both individual estimators and thus it has a very favorable risk behavior in a small sample case. Finally, the application to a two-way layout MANOVA model with interactions is discussed.
Keywords: Decision; theory; Empirical; Bayes; estimator; James-Stein; estimator; MANOVA; model; Minimaxity; Multivariate; linear; regression; model; Shrinkage; estimation; Simultaneous; estimation (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00063-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:98:y:2007:i:8:p:1592-1610
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().