Sharp adaptation for spherical inverse problems with applications to medical imaging
Ja-Yong Koo and
Peter T. Kim
Journal of Multivariate Analysis, 2008, vol. 99, issue 2, 165-190
Abstract:
This paper examines the estimation of an indirect signal embedded in white noise for the spherical case. It is found that the sharp minimax bound is determined by the degree to which the indirect signal is embedded in the linear operator. Thus, when the linear operator has polynomial decay, recovery of the signal is polynomial, whereas if the linear operator has exponential decay, recovery of the signal is logarithmic. The constants are determined for these classes as well. Adaptive sharp estimation is also carried out. In the polynomial case a blockwise shrinkage estimator is needed while in the exponential case, a straight projection estimator will suffice. The framework of this paper include applications to medical imaging, in particular, to cone beam image reconstruction and to diffusion magnetic resonance imaging. Discussion of these applications are included.
Keywords: Deconvolution; Klein-Nishina; distribution; Mixtures; Pinsker; theory; Spherical; harmonics (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00096-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:99:y:2008:i:2:p:165-190
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().