EconPapers    
Economics at your fingertips  
 

Wishartness and independence of matrix quadratic forms in a normal random matrix

Jianhua Hu

Journal of Multivariate Analysis, 2008, vol. 99, issue 3, 555-571

Abstract: Let Y be an nxp multivariate normal random matrix with general covariance [Sigma]Y. The general covariance [Sigma]Y of Y means that the collection of all np elements in Y has an arbitrary npxnp covariance matrix. A set of general, succinct and verifiable necessary and sufficient conditions is established for matrix quadratic forms Y'WiY's with the symmetric Wi's to be an independent family of random matrices distributed as Wishart distributions. Moreover, a set of general necessary and sufficient conditions is obtained for matrix quadratic forms Y'WiY's to be an independent family of random matrices distributed as noncentral Wishart distributions. Some usual versions of Cochran's theorem are presented as the special cases of these results.

Keywords: primary; 62.40; secondary; 62E15; Cochran's; theorem; Independence; Matrix; quadratic; form; Noncentral; Wishart; distribution; Wishart; distribution; Wishartness (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00014-0
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:99:y:2008:i:3:p:555-571

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:99:y:2008:i:3:p:555-571